你把alphastar的模型代码写出来
```python
import numpy as np
import random
import gym
class AlphaStar:
def __init__(self, env):
self.env = env # environment (game) to learn from and act in
# hyperparameters for learning algorithm
self.alpha = 0.1 # learning rate
self.gamma = 0.9 # discount factor
# model parameters - weights for the prediction function
self.weights = np.random.rand(env.observation_space, env.action_space)
def predict(self, state):
return np.dot(self,state, weights) # dot product of state and weights vectors
def update(self, state, action, reward):
prediction = self.predict(state) # predicted value of the current state-action pair
target = reward + self.gamma * np.max(prediction[action]) # target value - TD-target or Q-value target
# calculate error between prediction and target values error = prediction[action] - target
# update weights using gradient descent algorithm self..weights[state][action] += self..alpha * error * state[state] return error def train(self): done=False while not done: curr_state=env..reset() while True: action=np..argmax(predict()) next_state ,reward ,done ,info=env..step() if done : break else : update() curr_state=next_state if done : break env..close() ```
AI智能问答网免责声明:
以上内容除特别注明外均来源于网友提问、ChatGPT回答,权益归原著者所有,本站仅作效果演示和欣赏之用;
若以上展示有冒犯或侵害到您,敬请联系我们进行删除处理,谢谢!